| Serial No. | Test Category | Test Items                                                 | Test Contents                                              | Instruments                                 | Mechanism/Method overview                                                                                                                                                                                                                                                                                                                          | Requirements of Sample                                                 | Test Time<br>(for one single<br>sample) | Test Period (from receiving the sample to uploading the | Test Ability       | Remarks |
|------------|---------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------|---------|
| 1          | Materials     | EIS Test for Coin Cell                                     | Obtaining Nyquist plot<br>for coin cell                    | Bio-Logic<br>Electrochemical<br>Workstation | Coin cells are firstly assembled by the materials to be tested, and then activated and adjusted to a specific SOC. The cells at the specific SOC would be tested to acquire their Nyquist Plots using an electrochemical workstation under a specific temperature, and finally the kinetic differences of the several materilas could be compared. | Coin cells activated and adjusted to a specific SOC should be provided | 1 day                                   | 3~5 days                                                | 8 samples per day  |         |
| 2          | Materials     | CV Test for Coin Cell                                      | Acquiring CV curve<br>for coin cell                        | Bio-Logic<br>Electrochemical<br>Workstation | Coin cells are firstly assembled by the materials to be tested, and then the cells would be charged and discharged for 3 times using an electrochemical workstation under room temperature to obtain their CV curves.                                                                                                                              | Coin cells without activating should be provided                       | 3~5 days                                | 3~5 days                                                | 4 samples per week |         |
| 3          | Materials     | Lithium Ion Diffusion<br>Coefficient Test for<br>Coin Cell | Using PITT to test<br>lithium ion diffusion<br>coefficient | Bio-Logic<br>Electrochemical<br>Workstation | Coin cells are firstly assembled by the materials to be tested, and then activated and adjusted to a specific voltage (generally 0.8V, 0.1V and 0.01V for anodes; and 3.7V, 3.9V and 4.3V for cathodes). A potentiostatic step was performed using an electrochemical workstation to calculate the lithium ion diffusion coefficient.              | Coin cells activated and adjusted to a specific SOC should be provided | 2~3 days                                | 5~7 days                                                | 4 samples per week |         |

| 4 | Materials | Cycling Test at 45 °C<br>for Coin Cell         | Cycling test at 45 °C for coin cell                                                                                          | Land Battery Test<br>System                  | Coin cells are firstly assembled by the materials to be tested, and then activated and placed on the battery test system under the temperature of 45 °C. The cells would be charged and discharged for 30 cycles using the Crate of 1C, and finally the capacity retention for each cycle could be obtained.                     | Coin cells activated and adjusted to a specific SOC should be provided | 4∼5 days | 5~7 days | 4 samples per week      |
|---|-----------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------|----------|-------------------------|
| 5 | Materials | Borderline of Lithium<br>Plating for Coin Cell | Acquiring the<br>borderline rate of<br>lithium plating<br>occuring for coin cell                                             | Land Battery Test<br>System                  | Coin cells are firstly assembled by the materials to be tested, and then activated for 3 cycles. A sequence C-rates would be applied to the cells for discharging until a unique signal implying for lithium plating occurs, and finally the borderline rate of lithium plating could be confirmed.                              | Coin cells without activating should<br>be provided                    | 3∼4 days | 7~9 days | 10 samples per week     |
| 6 | Materials | In situ Expansion-rate<br>Test                 | In-situ expansion of<br>materials during<br>charge and discharg<br>process                                                   | Keyence Sensor, Arbin<br>Battery Test System | The battery is activated with successively small currents of 0.02C, 0.05C and 0.1C, and then charged and discharged at 0.2C for one cycle to ensure a complete SEI formation. The battery is then cycled at 0.5 C for several times and the expansion thickness of the anode is measured synchronously during the whole process. | 30 g powder                                                            | 10 days  | 25 days  | 18 samples per<br>month |
| 7 | Materials | In situ X-ray Diffraction<br>Test              | The examination of<br>structural evolution of<br>the materials upon<br>charge/discharge<br>process or dynamic<br>temperature | Bruker X-ray<br>Diffractometer               | Synchronous detection of the structural evolution of the materials during charge/discharge or heating/cooling process.                                                                                                                                                                                                           | 30 g powder                                                            | 1 days   | 4 days   | 16 samples per<br>month |

| 8  | Batteries | Power Test                                                                             | The power test of<br>pouch cells or cylinder<br>cells | Land Battery Test<br>System                                                              | The battery is adjusted to a specific SOC (generally 50% SOC), and then charged and discharged for 10s, respectively, with varied rates at a specific temperature (the varied range of rates should be adjusted according to the specific capacity of the battery). Fianlly the power of the baterries could be calculated.                                                                               | Pouch cells or cylinder cells<br>activated and adjusted to a specific<br>SOC should be provided | 1∼2 days  | 5~7 days  | 8 samples per week  |  |
|----|-----------|----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|-----------|---------------------|--|
| 9  | Batteries | Single-layer Pouch Cell<br>Fabrication and its<br>Electrochemical<br>Performance Tests | The electrochemical performance of materials          | Land, Arbin, Maccor<br>Battery Test System, Bio-<br>Logic Electrochemical<br>Workstation | The materials can be fabricated into a single-layer pouch cell, and its electrochemical performance, involving EIS, DCR, charge/discharge curve, rate capability, discharge capacity at different temperatures, high-temperature storage performance, critical rate for lithium plating, cycle performance, and so on, could be examined by using the battery test system or electrochemical workstation. | Anode powder (500g per sample)                                                                  | 2~3 weeks | 3∼4 weeks | 4 samples per month |  |
| 10 | Batteries | EIS Test for<br>Symmetrical Cell                                                       | EIS test of the<br>cathode/anode at<br>specific SOC   | Bio-Logic<br>Electrochemical<br>Workstation                                              | The cycled battery is disassembled upon a specific SOC in an argon atmosphere. Symmetrical cells are fabricated by using either positive or negative electrodes harvested from the battery to obtain the separately positive or negative EIS information.                                                                                                                                                 | Pouch cells or cylinder cells<br>activated and adjusted to a specific<br>SOC should be provided | 2∼3 days  | 8~10 days | 5 samples per month |  |